Iron & Steel

Iron

Iron : Iron, like most metals, is not found in the Earth's crust in a native state. Since the rise of the cyan bacteria and their excretion of oxygen into the atmosphere, iron can be found in the crust only in combination with oxygen or sulfur. Typically Fe2O3 the form of iron oxide found as the mineral hematite, and FeS2 Pyrite. Iron oxide is a soft sandstone-like material with limited uses on its own. Iron is extracted from ore by removing the oxygen by combining it with a preferred chemical partner such as carbon. This process, known as smelting, was first applied to metals with lower melting points. Copper melts at just over 1000 C, while tin melts around 250 C. Both temperatures could be reached with ancient methods that have been used for at least 6000 years (since the Bronze Age). Since the oxidation rate itself increases rapidly beyond 800 C, it is important that smelting take place in a fairly oxygen-free environment. Unlike copper and tin, liquid iron dissolves carbon quite readily, so that smelting results in an alloy containing too much carbon to be called steel.

Even in the narrow range of concentrations that make up steel, mixtures of carbon and iron can form into a number of different structures, or allotropes, with very different properties; understanding these is essential to making quality steel. At room temperature, the most stable form of iron is the body-centered cubic structure ferrite or a-iron, a fairly soft metallic material that can dissolve only a small concentration of carbon (no more than 0.021 wt% at 910 C). Above 910 C ferrite undergoes a phase transition from body-centered cubic to a face-centered cubic configuration, called austenite or Gamma Phase Iron, which is similarly soft and metallic but can dissolve considerably more carbon (as much as 2.04 wt% carbon at 1146 C). As carbon-rich austenite cools, the mixture attempts to revert to the ferrite phase, resulting in an excess of carbon.

Other materials are often added to the iron-carbon mixture to tailor the resulting properties. Nickel and manganese in steel add to its tensile strength and make austenite more chemically stable, chromium increases the hardness and melting temperature and vanadium also increases the hardness while reducing the effects of metal fatigue. Large amounts of chromium and nickel (often 18 and 8 %, respectively) are added to stainless steel so that a hard oxide forms on the metal surface, to inhibit corrosion. Tungsten interferes with the formation of cementite, allowing martensite to form with slower quench rates, resulting in high speed steel. On the other hand sulfur, nitrogen, and phosphorus make steel more brittle, so these commonly found elements must be removed from the ore during processing.

When iron is smelted from its ore by commercial processes, it contains more carbon than is desirable. To become steel, it must be melted and re-processed to remove the correct amount of carbon, at which point other elements can be added. Once this liquid is cast into ingots, it usually must be "worked" at high temperature to remove any cracks or poorly-mixed regions from the solidification process, and to produce shapes such as plate, sheet, wire, etc. It is then heat-treated to produce a desirable crystal structure, and often "cold worked" to produce the final shape. In modern steelmaking these processes are often combined, with ore going in one end of the assembly line and finished steel coming out the other. These can be streamlined by a deft control of the interaction between work hardening and tempering.

Steel

Steel : Steel is a metal alloy whose major component is iron, with carbon being the primary alloying material. Carbon acts as a hardening agent, preventing iron atoms, which are naturally arranged in a lattice, from sliding past one another. Varying the amount of carbon and its distribution in the alloy controls the qualities of the resulting steel. Steel with increased carbon content can be made harder and stronger than iron, but is also more brittle. One classical definition is that steels are iron-carbon alloys with up to 5.1 percent carbon; ironically, alloys with higher carbon content than this are known as cast iron.

.